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Published data on radial distribution functions of liquid argon and of many cubic face-centred and 
body-centred liquid metals at different temperatures (as well as of solid copper at two different tem- 
peratures) have been analysed by the method proposed earlier [Bagchi (1970). Advane. Phys. 19, 119]. 
Analysis of the results shows that the liquid state consists of clusters of distorted microcrystallites whose 
linear dimensions vary from 50 to 150/~,. Relative lattice distortion near the melting point is around 
10 % for f.c.c, structures and 8 % for b.c.c, structures. It is shown that from the standpoint of diffraction 
theory such a structure of the liquid state is equivalent to the two-phase model underlying the significant 
structure theory of liquids proposed by Eyring and coworkers. Thus the liquid state represents an as- 
sembly of small thermodynamic systems. It is suggested that the first order phase transition is caused 
chiefly by the breakdown of a statistically homogeneous assembly of atoms representing crystals and 
gases into a statistically inhomogeneous system. 

1. Introduction 

In practice the radial distribution function (RDF), 
g(r), is always obtained from the inverse transform of 
the intensity function (1) derived first by Zernike & 
Prins (1927) 

l(u)=~(v) 
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The function g at different values of r is usually cal- 
culated from the relation (2): 

i 
oo 

4rcrZg(r) = 4zrr2~+ 87rr u. i(u) sin 2~zurdu. (2) 
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Here u = [b[ = 2 (sin 0)/2 is the magnitude of the recip- 
rocal distance vector b and r that of the distance vec- 
tor x in physical space, iV(V) is the average number of 
atoms (or molecules) in the volume V exposed to the 
primary beam. p is the average macroscopic density 
of the liquid. I f0[  2 is the structure factor of the atom (or 
molecule). ]D0[ 2 is the Debye-Waller factor due to 
harmonic thermal vibrations of atoms. 

i(u) = I(u)- _~l f°l 2 , (3) 

g(r)=go(r)  + p = fin2(r), (4) 

and nz(r)=pair  distribution function. The symbol . . .  
denotes the value of the function averaged over all 

* Part of the lecture delivered at The Second International 
Conference on Small Angle Scattering held at Graz (Austria) 
in August, 1970. 
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directions of space. In order to analyse g(r) properly 
and to draw reliable conclusions from such analyses, 
one must first take note of the inherent limitations of 
(1) and the true physical meaning of g(r) given by (2). 
In previous publications (see in particular, Hosemann 
& Bagchi (1962); Bagchi (1970), cited hereafter as I and 
II respectively) these problems have been discussed in 
detail from the standpoint of the Unified Kinematic 
Theory of Diffraction by Matter of Any Kind. Since 
in this paper we shall be using this theory to analyse 
g(r) obtained from (2) and to draw many new conclu- 
sions, it is desirable that we look at this unified theory 
and its relations to the conventional theories - [namely, 
(i) Laue-Bragg-Debye-Waller theory of diffraction by 
crystals, (ii) the theory of scattering by 'primitive' 
liquids as formulated by Zernike & Prins and Debye & 
Menke and (iii) the theory of scattering by ideal gases 
or amorphous matter developed by Debye, Guinier 
and others, which for variety of reasons are almost 
always used for practical evaluation of the results of 
diffraction experiments] - from the standpoint of 
distribution function theory. 

The intensity function l(b) coherently scattered in 
the Fraunhofer region by any system whatsoever, 
(homogeneous or inhomogeneous), is given, apart 
from proportionality factors which depend on the 
experimental set up but not on the density distribution 
encountered in the system, by 

N N 

l (b)=  ~ ~ f,,,f* exp { -  2~zi[b. (Xm- x,,)]}, (5) 
m ~ l  n = l  

where f,.(b) is the scattered amplitude for the electron 
density distribution of the ruth atom when its centroid 
lies at the origin, f *  (b) is the complex conjugate of the 
scattered amplitude for the nth atom and x , . - x ,  is the 
distance of separation of these two atoms, b is the reci- 
procal vector defined by b = a - % / 2 ;  [bl=2 sin 0/2, 
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~, a0 are unit vectors in the directions of scattered and 
incident beams respectively; 2 is the wavelength of the 
incident beam, 20 is the scattering angle and N is the 
number of atoms present in the substance. 

The expression (5), though exact, is for all practical 
purposes useless. In order to get a useful expression 
out of this one always uses the probability of oc- 
currence of the ruth atom with respect to the reference 
atom and sums over all the atoms m and n. It must be 
noted that this probability and summation refer to the 
atoms in the physical space and consequently, should 
be introduced in the appropriate expression for the 
density distribution and not in equation (5). If one 
intends to introduce the averaging over all positions of 
atoms in equation (5), one has to incorporate the 'pair 
distribution function' and not the density distribution 
of centroids of atoms. This pair distribution function is 
proportional to the convolution square of the density 
function. Consequently, neither from intensity data 
nor from its inverse transform do we get this prob- 
ability function directly• Conventional theories men- 
tioned above are obtained by assuming different prob- 
ability distribution functions for the occurrence of the 
atoms• In all such theories one is forced to introduce 
the concept of distribution function for the occurrence 
of atoms relative to any origin in order to get any useful 
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Fig. 1. Liquid argon• (i) Ar-1 at 84.25 °K (Gingrich & Thomp- 
son, 1962), (ii) Ar-H at 84°K (Henshaw, 1957), (iii) Ar-2 at 
91"8°K (Eisenstein & Gingrich, 1942)• (Vertical scales are 
successively shifted by 10 units)• Experimental ( . . . )  and 
calculated (k)  RDF by varying ~ only. 
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Fig. 2. (i) Liquid copper at 1313°K (Ruppersberg, 1964), 
(ii) Liquid gold at 1373°K (Hendus, 1947), (iii) Liquid 
sodium at 373°K (Gingrich & Heaton, 1961)• (Vertical 
scales are successively shifted by 10 units)• Experimental 
( . . . )  and calculated (--) RDF by varying ct only. 

information out of the generally valid expression (5). 
This means that all conventional theories are applic- 
able to systems which are statistically homogeneous. 
Obviously none of these theories can offer us depend- 
able results if the system is statistically inhomogeneous. 
It is therefore obvious that in order to get a generally 
valid expression for the intensity function which would 
yield the well known expressions of the conventional 
theories, one must restrict oneself to substances which 
are statistically homogeneous. From the detailed 
considerations of the intensity function of  any ar- 
bitrary structure it was proved before (cf. references I 
and II) that for this it is necessary to introduce the 
concept of a generalized lattice. A generalized lattice 
need not be a perfectly periodic pattern but has to 
prescribe the reference points of the lattice with given 
a priori statistics. For this it is necessary and sufficient 
that we define the generalized lattice as a statistically 
homogeneous system in which the volumes of the lattice 
cells are distributed randomly for any volume under 
consideration. Consequently, not only volumes of 
lattice cells in a generalized lattice vary independently 
both in their shapes and sizes, but the reference points 
of lattice cells are also distributed randomly through- 
out the space. The statistics of neighbouring lattice 
points inform us about the degree of distortion of the 
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ideal lattice and the generalized lattice depending on 
this degree of distortion could represent the structures 
not only of crystaIs, liquids and gases but also of any 
(statistically) homogeneous substance provided we 
distribute the atoms around these reference points.* 
The Fourier transform of the distance statistics of these 
reference points, the so-called lattice statistics z (x), 
then describes the characteristic features of diffraction 
patterns not only for ideal crystals, primitive liquids 
and ideal gases, but also for any substance in any state 
of aggregation provided it is statistically homogeneous. 

The intensity function I(b) and its inverse transform 
Q(x) for any statistically homogeneous substance can 
be expressed as (see II, equations 48-50): 

/Co)=_~(v) [Ifol~- IDol'lfolq 
1 

+ ..... I D o l q f o l ' { Z ,  ISP}, 
/3 

(6) 

Q(x)=N(V) , ~ o - A o * P o  + ~-Ao*Po* z'~ (7) 

where f = t h e  mean volume of the primitive lattice cell 
or, the mean volume occupied by a 'particle', p0(x)= 
cell element i.e. density distribution function within 
the elementary cell with its centroid at the origin, 
s(x) is Ewald's shape function and S(b) its Fourier 
transform, f0(b) = ~-p0(x) and 

z(x)= lim 1 ~ N--+ oo ~ '~  ~ ( X -  X m "1- Xn) 
, m----1 

(8) 

is the lattice statistics, i.e. distance statistics function 
within a single infinitely extended lattice. 

Also Z(b) = lattice statistics factor = om'z(x); ~ ,  ore'- * 
are the symbols of Fourier integrals; dvx, dv v are 
elements of volume in the physical space; dvb is the 
volume element of the reciprocal space, • is the symbol 
for convolution product and 2 that for convolution 
square, i.e. convolution product of a function g(x) and 
its inverse symmetric function g ( - x ) .  

A0(x)-- Ap(x) = ~ ( x -  Axp); O0(b) =.~-A0(x). A0(x) re- 
presents the distribution of the centroid of the cell 
element pop(x) lying at the pth cell around its mean 
value xp. Let us note here that the distribution function 
A0(x) which represents the deviation of the centroid 
of the atoms from their most probable values really splits 
up the statistical distribution of atoms due to an- 
harmonic vibrations into the distribution of most 
probable positions of the atoms and the distribution 
of the centroids of the atoms around these positions, 
analogous to the so-called quasi-harmonic approx- 
imation of crystal lattice vibrations. Only in this case 
most probable positions, i. e. the reference points of 

the generalized lattice, are distributed in a characteristic 
way depending on the structure instead of in an ideal 
lattice. It includes the distortion of the first kind as 
defined before (see I and II) as a special case. In the 
more general case it is merely a convenient way 
of describing the statistical distribution of the 
centroids of atoms within the system. Consequently, 
as will be seen later, in analysing RDF of liquids it is 
enough to detenaaine the degree of lattice distortion, 
i.e. the distribution of the most probable positions of 
the lattice cells as well as their dispersions around these 
values. The effect of thermal vibration is completely 
included in this expression and our experience shows 
that it would give wrong results if in analysing RDF we 
try to separate them arbitrarily into first kind, due to 
thermal vibrations alone and the second kind due to 
lattice positions. The correct procedure for getting the 
information about these two kinds of distortions is 
described with reference to equations (16) to (19). 

It is to be noted that contrary to the expression of 
the intensity function of an arbitrary structure, the ex- 
pression (6), whose characteristic features depend 
chiefly on Z(b), can be analysed quantitatively with the 
help of a few coordination statistics. For 'primitive' 
liquids only one spherically-symmetric-nearest-neigh- 
bour statistics is sufficient to characterise Z(b), (for 
the proof see reference II, section 9). 
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* For theoretical treatment we can always consider a prim- 
itive lattice" the density distribution within an atom would 
then constitute the cell element Q0 (x) of the lattice. 

Fig. 3. (i) Ar-1, (ii) At-2,  (iii) Ar-H.  (Vertical scales are suc- 
cessively shifted by 10 units). Experimental ( . . . )  and cal- 
culated (--)  R D F  by varying all parameters simultaneously. 



S. N. B A G C H I  563 

Further,  as has been proved before, equation (6) not  
only degenerates to the well known expressions of  the 
conventional  theories, but  also predicts something 
more. It defines the conditions which would produce 
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reflexions characteristic of  each of  these types and the 
limits of  the validities of  each of  them. For  example, i f  

A Z ( b - h h ) >  > > dlS(b-hh)12, t  (9) 

equation (6) reduces to the expression (10) 

/(b) = N(V) [If01' + I f 0 1 Z l D 0 1 2 ( Z  - 1)], (10) 

which shows 'diffuse' reflexions having all the 
characteristic properties of  the intensity distribution 
scattered by a liquid. 

Moreover, i f  the distance statistics z(x) is spher- 
ically symmetric,  its Fourier  t ransform would also be 
spherically symmetric  and equation (10) in this case 
reduces to the well-known expression (1). The function 
g(r) is related to z(x) by (11): 

(11) 

It is impor tant  to note that  since Z(b) contains a 
delta function of  weight 1/~ at b = 0, Z(b) always behaves 
like a delta funct ion compared to ISI 2 as b--~0.  
Consequently,  equation (10) and, therefore, equation 
(1) are not  applicable in the ne ighbourhood of  b = 0 .  
That  means,  as is well known, the central reflexion i.e. 
000-reflexion, is always crystalline no matter  what  is 
the degree of  lattice distortion and it is not contained 
in the expressions (10) and (1). 
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Fig. 4. (i) Liquid gold, (ii) Liquid copper (Vertical scale shifted 
by 25 units). (iii) Liquid aluminum at 943 °K (Ruppersberg, 
1965). (Vertical scale shifted by a further 15 units). Experi- 
mental ( . . . )  and calculated (--) RDF by varying all par- 
ameters simultaneously. 

2. Distance statistics function z(x) and correlation length 

The distance statistics function z(x) is defined by the 
expression (8). It shows that  the function z(x) gives the 

t A represents the widths of the humps of the functions. 
Symbol > > > indicates greater in all three directions. 

Table 1. Significant structural parameters, e.g. lattice distortion, correlation lengths for simple liquid systems as well 
as for solid copper at two different temperatures having f.c.c, crystalline structures obtained from the analysis of  

their radial distribution functions 
For the exact meaning of the symbols and their derivation, see text (§ 3). 

Ar-H Ar-1 Ar-2 A1 Au Pb Cu 
• ^ ~ e - - -  ' ~ '  

T(°K) 84 84"4 91"8 943 1373 623 823 1313 1293 973 
(0"8 atm) (1.8 atm) 

O(°K) 80 80 80 396 186 86 86 313 313 313 
0.6678 0.5965 0.5381 0.4979 0.4785 0.5904 0.6054 0.4378 0.2802 0.2210 

rl 3.861 3"861 3-746 2.813 2.891 3"388 3"390 2"462 2"563 2-527 
A2r 0"2230 0"1779 0"1448 0"1240 0"1146 0"1743 0"1833 0.0958 0"0393 0"0244 
Ar/rl (%) 12-23 10.92 10"16 12"51 11"70 12"32 12.63 12"57 7"73 6"18 
~LeA)lPe[((n'd') 17 21 24 16 18 17 16 16 42 65 

16.39 18.21 19.10 11.60 12-60 13-97 13-56 10.15 17.57 21.44 
A2s 0"0487 0"0487 0"0487 0"0323 0"0291 0"0619 0"0798 0"0305 0"0300 0"0227 
A2a 0-1743 0"1292 0"0961 0"0917 0"0855 0"1124"  0"1035" 0"0653  0"0093 0-0017 
Aa/rl (%) 10"85 9"31 8"28 10"76 10"11 9"896* 9"490* 10.38 3"76 1"63 
IP~I (n.d.) 86 115 146 86 98 103" 112" 93 706 3765 
L (/~) 75-7 89.4 95.4 55.1 67.4 68.76 71.75 50 ~ 143 ~ 325 

* The slight differences in the numerical values should not be considered as significant. The reversed order for higher tem- 
peratures is more likely due to the inaccuracy in the values of A2s calculated from Debye's theory for harmonic vibrations and 
uncertainties involved in the values for O. 
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average distances of the centroids of different neigh- 
bours of an identical structure but extended indefinite- 
ly. It must be noted that this averaging is obtained 
conceptually by measuring the distances of each neigh- 
bour with respect to a fixed centre and then taking 
each centre as the reference point and finally averaging 
over all centres. This is easily seen if we note that the 
expression 

N 

z.(x) = ~ 6 ( x -  xm + x.) 
m = l  

gives the distances of all the particles m from the fixed 
nth atom. Further, since 6 ( x -  Xm + x,) = 6 ( x -  x,,) * 
6 (x -x , ) ,  the distance statistics function (8) really is 
the convolution product of the density distribution and 
does not directly give the density distribution. Even 
for a substance containing 'point-like' atoms (i.e. 
atoms whose density distribution is given by delta 
functions) the inverse transform of the intensity func- 
tion does not give the distances between the atoms 
directly, though in such simple cases the Q function is 
directly proportional to z(x)" 

2 
~ - a I ( b ) - Q ( x ) = l / g . z ( x ) . ' ~ ( x ) .  (12) 

The function z(x) contains a delta function of weight 
unity at x = 0  and vanishes (for rigid atoms) within a 
distance of twice the radius of the atom. At larger 
distances it shows maxima and minima characteristic 
of the distribution and finally at a sufficiently large 
distance, again characteristic of the distribution func- 
tion, it attains a constant value equal to the average 
density. The interaction zone of the distribution there- 
fore extends to the region v~ where the function z(x) 
has not yet reached its final constant value 1/g and it 
is usually designated as the 'correlation length' of the 
distribution. From physical considerations it is evident 
that the correlation length must always be finite if the 
distances of neighbours show the slightest fluctuation. 
Once we have the coordination statistics we can estim- 
ate the radius of the interaction zone, i.e. the correla- 
tion length of the lattice as well as that of the pair 
distribution function. The number of nearest neigh- 
bours in a particular direction k corresponding to 
these two correlation lengths are obtained respectively 
from the formulae 

IPz[- I~kl/(A~,x),.~,,~ce, (13) 

Ipcl = F .  I5kl2/(A~,X)tota,, (14) 

where 2 ( z~kX) la t t i e e  and (A,Zx)tota~ denote respectively the 
mean square fluctuation in the positions of atoms due 
to lattice distortion alone and to the joint effect of the 
lattice distortion and thermal vibrations. For details 
see {} 3. e is a parameter which determines the zone in 
Fourier space, the so-called limiting ellipsoid of re- 
flexion, outside which no distinct reflexion hump can 
be observed. The value of e depends on the coordina- 
tion statistics, (for proof see reference II, § 11). 

3. Analysis of g(r) of simple liquids 

The function g(r) is calculated from the expression (2) 
and is based on the intensity function (1) of the 
Zernike-Prins theory. Consequently, as noted before, 
neither equation (10) nor equation (1) is generally 
valid in the domain of small-angle scattering. If the 
small-angle scattering does not extend to the region of 
interest and if the observed intensity function is cor- 
rected for other relevant factors, e.g. incoherent scat- 
tering, absorption factor, termination effect, etc., then, 
equations (10) and (1) are correct for 'primitive' 
liquids, i.e. liquids which can be looked upon as a 
single statistically homogeneous lattice. From equa- 
tion (2) we shall therefore get the correct g(r) provided 
the structure factor If0l z is known. The ratio 
ID01 z . I f012 / l f0 l  2 is absorbed in i(u), [el equation (10)], 
so that g(r) includes also the smearing effect of the 
random thermal vibrations of the atoms. It means that 
g(r) contains cffccts of distortion of thc latticc and of 
(random) thermal vibrations. Both these effects 
simultaneously determine the correlation length of 
the pair distribution function. Since even in crys- 
tals distances of nth and (n+l ) th  neighbours 
(n>~ 1) lie very close to one another, due to thermal 
vibrations, g(r) functions would attain their final 
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Fig. 5. Liquid lead (Sharrah & Smith, 1953). (i) at 623°K, 
(ii) at 823°K. (Vertical scale shifted by 10 units). Experi- 
mental ( . . . )  and calculated (--) RDF by varying all par- 
ameters simultaneously. 
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constant  value after a relatively short  distance. 
This means,  that  the 'correlation length'  ]Pcl of  nz(r), 
even for crystals, would be (relatively) quite short, (see 
the values for Cu at 973 and 1293 °K in Table 1). But 
one must  be cautious in applying equation (2) for the 
case of  crystals since equations (10) and (1) and conse- 
quently equation (2) are valid only if  the humps  of  the 
shape factor behave as delta functions compared to 
those of  the Z(b) functions. For  'crystals '  these equa- 
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Fig. 6. (i) Liquid lithium at 453°K, (ii) Liquid sodium at 
373°K, (iii) Liquid potassium at 338°K. Experimental 
values ( . . . )  (Gingrich & Heaton, 1961) and calculated (--) 
RDF by varying all parameters simultaneously. 

tions would be applicable i f  the l inear dimension of  the 
crystallites is greater than the interaction zone of  the 
lattice. That  is, i f  

[~k[ 2 
lPtkl > A ~ a '  [cf. equation (13)]. 

It is obvious that  for 'perfect '  crystals equation (2) 
would not be valid. Of  course, for any structure what- 
soever, the inverse t ransform of  the intensity function 
(over the entire Fourier  space) always gives z(x), but  
in general it involves the shape factor in a complicated 
way, [see equation (12)]. Nevertheless, for real crystals 
at higher temperatures where the lattice distortion be- 
comes considerable (see the data for copper in Table 1) 
it may  be that  the relation AZ(b) > > > AISI z is satisfied 
so that  we can apply equation (2). Since we intend to 
analyse the data already available in this domain,  let 
us assume the validity of  equation (2) for crystalline 
powders at temperatures near  their melt ing points. 
Kaplow, Averbach & Strong (1964) and  Kaplow,  
Strong & Averbach (1965) had  determined g(r) of  Pb 
at 325 and 329 °C, but  the data supplied by these au- 
thors f rom a conventional  analysis of  R D F  cannot  be 
relied upon  for the following reasons: (i) the g(r) func- 
tion is not  identical with the density function and 
cannot  be analysed by putt ing Gaussian functions at 
the observed maxima.  (ii) Mean-square displacements 
are much  too large compared to that  obtained f rom 
Debye 's  theory. I f  their values were correct we could 
get completely wrong results for the specific heats. On 
the other hand,  Debye 's  method of  determining am- 
plitudes of  thermal  'harmonic '  vibration,  though 
suffering from several l imitations, still gives very 
accurate values of  specific heats. (iii) One cannot  make 
inferences about  coupled thermal  vibrat ion f rom the 
results obtained from expressions (1) and (2) which 
were derived under  the fundamenta l  assumption of  
r andom thermal  vibrations. It is known that  coupled 
vibrations affect only the diffuse background scattering, 
(though under  specific conditions they may lead to 

Table 2. Significant structural parametersfor liquid alkali metals (b.e.c. structure) at various temperatures 
For the exact meaning of the symbols and their derivative, see text (§ 3). 

Li Na K Rb Cs 

T(°K) 453 373 338 "313 433 ^ 513 633 "303 573 ~ 848 "~ 
O (°K) 430 160 99 65 65 65 65 39.5 39.5 39.5 

0.5099 0.6188 0-6355 0.7368 0 .9858  0.9902 1.03 0-7693 0 .8713  1.011 
rl 3.117 3.789 4"518 4.925 4.741 4-763 4"77 5-284 5.251 5.251 
AZr 0-13 0-1915 0.2019 0-2715 0-4859 0"4902 0.530 0-296 0 . 3 7 9 5  0-5105 
Ar]rl (%) 11-57 11-54 9"95 10.58 14"70 14.70 15-27 10.3 11-73 13.61 
[pc[ (n.d.) 19 19 25 22 12 12 11 24 18 14 
Lc (A) 12-98 15-77 22"14 22"75 16"19 16"28 15"58 25"16 21"65 19"18 
A2S 0"0524 0"0919 0"1277 0"1254 0"1735 0"2055 0"2536 0"2113 0"3994 0"591 
AEa 0"0776 0"0996 0"0742 0"1461 0"3124 0"2847 0"2764 0"0847 ?* ?* 
Aa/rl (%) 8.94 8.33 6.03 7"76 11.79 11-20 11"03 5.5 
[psi (n.d.) 125 144 275 166 72 80 82 330 
L (A) 68.7 90"4 ,~ 148 126 79"54 84-32 85.84 ~ 190 

* The anomalies are more likely due to the errors in the values of A2s calculated from Debye's theory for harmonic vibrations 
and the uncertainties in the correct value for O rather than to the presence of clusters. 
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extra Laue spots), and consequently a much more 
detailed analysis of background scattering is needed to 
conclude anything about the nature of coupled vibra- 
tions. Further, equations (1) and (2) are not generally 
valid for cases where coupled vibrations play signi- 
ficant roles. Nevertheless, their published curves show 
convincingly that lattice distortion is present in solid 
lead as well but is smaller than in the case of liquids. 
These errors are also involved in the data presented by 
Ruppersberg (1964, 1965, 1966) in his analysis of 
aluminum and copper RDF. Our analysis of RDF of 
copper by Ruppersberg shows definitely that even just 
below the melting point the lattice distortion is signi- 
ficant but smaller than that in the liquid state. It also 
decreases markedly with decreasing temperature, (see 
Table 1). We can therefore conclude that lattice 
distortion exists at ordinary temperatures and in- 
creases appreciably as the temperature approaches the 
melting point. Nevertheless, at the melting point there 
is a significant jump in the lattice distortion. We can 
therefore safely conclude that liquids are nothing but 
more distorted crystallites of smaller sizes. 

We shall now proceed to analyse the available g(r) 
functions of various simple liquids by the method 
proposed earlier (reference II). We shall assume that 
equations (1) and (2) are valid and examine in detail 
the consequences of this assumption. Since g(r) re- 
presents the convolution square of the density func- 
tion, we have to 'deconvolute' g(r) to get the density 
distribution. We shall not use the analytic solution 
but fit the given g(r) curve by choosing properly, by 
trial and error, the probability distribution of the first 
neighbour Hi(r). The probability distribution of the 
nth neighbour is given by 

H.(r)= ~ Hv(r), 

1 
Hv(r) = 4rc3/Zm,/zo~rv 

v Ii 

. . . . .  r'/exp [ 
exp[ (,,r,;]} 

m~2 
(15) 

The summation is to be taken over all the atoms 
belonging to the given nth neighbour. It is determined 
by the coordination number Cp. rp denotes the location 
of the centroid of the pth atom; cd/2 =AZr denotes the 
mean-square fluctuation in any direction of the nearest- 
neighbour distance vector (n.d.) from rl, its most 
probable value.* m denotes the number of convolu- 
tions by which the pth atom is reached from the origin 
with the help of uncorrelated fundamental vectors of 
the nearest neighbours. All values are referred to the 
corresponding crystal structure at 0°K. Evidently, this 
corresponds to the case of harmonic displacements of 
the atoms around their ideal lattice positions. Conse- 

* For a normalized spherically symmetric function f(r-rp), 

7 A2r = (r-  rp)2f(r- rp). 4~r2dr. 
0 

quently, we should not expect any close agreement 
with the experimental results by varying e only. 
Nevertheless, as Figs. 1, 2, 9 (ii) and 9 (iv), show the 
results are strikingly similar.t Since in general, owing 
to anharmonic vibrations, %'s would also vary around 
their most probable positions and Cp's would also change 
from their crystalline values due to fissures, holes and 
clusters present in the liquid state, we did not try to 
achieve a closer agreement by varying 0~ only. Instead, 
by varying successively (cq rp, C;) we tried to obtain 
the best possible fit with the curve obtained from exper- 
imental results. We have not shown these curves here, 
but generally the agreement is better when one varies 
and ru simultaneously, keeping C, constant. This shows 
that variation of equilibrium positions plays a relatively 
more important role in determining the g(r) curve. 
Of course, the best fit is obtained when one varies 0c, rp 
and C o simultaneously. Figs. 3-8 speak for themselves 
and completely support our claim that liquids are 
nothing but distorted crystallites. It might be argued 
that since we have so many parameters to vary, it is 
not surprising that the agreement is good. But we have 
to remember that we are varying the parameters of 
the underlying crystalline structure. Consequently, 
there is not much freedom in the choice of parameters. 
A little trial would show that by arbitrarily varying 
any parameter, the agreement is largely destroyed.:l: 

Tables 1 and 2 summarize the results of analysis of 
RDF by giving the significant structural parameters of 
the liquid state, namely, c~, A2r, A2a, Ik<l, Lc, Iptl, L. 

t They illustrate the differences between g(r) functions due 
to atomic distributions represented by (crystalline) harmonic 
vibrations and the observed g(r)functions, satisfactorily 
reproduced in densely packed systems by harmonic disper- 
sions of atoms around the genelalized lattice, (cf. Figs. 3-9). 

:I: It should be emphasized that one must aim at curve 
fitting throughout the region and not merely in the neigh- 
bourhood of the first peak. The departure at the tail end of 
the calculated curves is due to the fact that only a finite number 
of neighbours (usually 8-12) was considered. 

Table 3. Most probable positions of various neighbours 
and their coordination numbers as calculated from the 

analysis of RDF for liquid argon 
For the exact meaning of the symbols and their derivation 

rx ; C1 
r2 ; C2 
r3 ; C3 
r4; C4 
rs; C5 
r6; C6 
r7; C7 
r8; Cs 
r9 ; C9 
r19 ; C19 
rio; Clo 
rl1 ; Cil 
r12; C12 

E2 

see text (§ 3). 

Ar-H 
3.861 ; 10.245 
5"38; 6"95 
6.90; 23.62 
7-96; 12.53 
9.27; 23.99 
9.27; 7.98 

10-64; 47-66 
10.54; 5"90 

Ar-1 
3.861; 11"605 
5-665 ; 8-49 
7.03 ; 22.05 
7.996; 12.00 
9-25 ; 25.00 
9"34; 8.10 

10.65; 45"05 
12.04; 7.55 
12.01; 13-09 
12"23; 24.28 
12.64; 24.43 
13.43; 23-73 
13.78; 13.96 

8"10 38"18 

Ar-2 
3.746; 7"87 
4-98; 6.81 
6.33; 11-77 
7.25; 12.84 
8-28; 23-46 

21"12 
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Table 4. Data as for Table 3 but for simple Bquid fc .c .  metals as well as solid copper at two temperatures 

For the exact meaning of the symbols and their derivation, see text (§ 3). 

AI Au Pb Cu 

6~3o K ~ 823~K 13"13°K 12;3°K 973"°K 
rl; C1 2"813; 12"09 2"891;  10"68 3"388; 11-04 3"39; 10-47 2"462; 10"31 2"563; 12"59 2-527; 10"60 
r2; C2 3.99" 6.36 4.16; 8.72 4.87; 8.36 4.777" 8.35 3.41; 4 -46  3.64; 6.08 3.65; 8.03 
r3; C3 5.09; 23.26 5.24; 22.41 6"176; 22.25 6-198; 22-25 4.43; 18-51 4-52; 26.62 4"41; 26.10 
r4; C4 5.90" 11.90 5"89; 12-30 7"073; 12.38 7-16" 12.95 5.05" 13.73 5.17; 8.73 5"07; 13.14 
r5; C5 6-76" 24"47 6.84; 28"02 8"05; 24.03 8"165; 23.64 5.73; 17-35 
r6; C6 6-88; 8-01 8.27; 12.83 8.40; 7.89 8.17" 7-99 6.15; 5.92 
r7; C7 7.85" 47"5 7-92; 45"6 9"51; 47.8 9.77" 46"6 6.72; 40"7 
rs; C8 10"18; 5"9 7"28; 5"70 9"91; 6.0 9"77;  10.6 7"39; 6"7 
r9; C9 8.87" 12-0 10"58; 12 10.21; 12 7"63; 10"5 
r9,; C9, 8"93; 24.0 10"46; 22-0 10.21; 24"2 7"62; 23.0 
rl0; C10 9.29; 24-1 10"46; 23-2 10.292; 24.6 8-00; 14-3 
272 63"02 6"91 16.79 17-57 175"15 67"64 440"27 

Tables 3 to 5 give the pert inent values of  rps and Cps. 
~2 represents the sum of  least squares for about  50--75 
equidistant  points. We did not consider it worthwhile 
consuming more computer  time to obtain better agree- 
ment. 

F rom the curves near the melt ing points it can be 
seen that  extremely good agreement has been obtained 
by varying only the distribution of  the centroids of  atoms 
around their most probable positions. In fact, as pointed 
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out earlier, in the g(r) function only the positions of  
the atoms, due to the combined effect of  lattice distor- 
tion and harmonic  vibrations around each of  the lattice 
points, constitute the determining factor. These factors 
joint ly  determine the correlation length of  the g(r) 
function, i.e. of  the pair  distribution function n2(r). 
Further,  Figs. 6 to 8 show convincingly that  curves for 
l iquid alkali  metals near  their melting points can be 
fitted well to distorted body-centred-cubic structures. 

In order to find the correlation length Lc of  the pair  
distr ibution function we determine first the number  of  
neighbours corresponding to it f rom the formula  (14) 

IPcl ~- e2 . (rl/Ar) z. (14a) 

It must  be noted that the nth neighbour  distance (n.d.) 
d, ~ n .  rl, (rl = nearest n.d.) but  depends on the struc- 
ture. The mean value ~1 = rl + c~2/2r~ differs only slightly 
f rom the most  probable  value and we have not tried 
to distinguish between them. All the relevant values 
quoted in the Tables 1-5 were calculated for the most 
probable  value rl. 

Now, in order to determine the distortion of  the 
lattice positions themselves we have to separate the 
effect of  thermal  vibrations around the positions of  
individual  atoms. The calculated Hp(r-rp) would then 
be given by 

Hp(r - rp)=Ht(r - rp )  * Hth(r) (16) 

Table 5. Data as for Table 3 but for Rquid alkaR metals 
(b.c.c. structure) at different temperatures 

For the exact meaning of the symbols and their derivation 

0 l _ ~ / ~  rl; C1 
4 5 6 7 8 9 10 11 12 r2; C2 

r3" C3 
r(A) - - - "  r4 ;  C4 

rs; C5 
Fig. 7. Liquid rubidium. (i) at 313°K, (it) at 433°K, (iii) at r6; C6 

513°K, (iv) at 633 °K. Vertical scales are successively by r7; C7 
2 units. Experimental values ( . . . )  (Gingrich & Heaton, rs; C8 
1961) and calculated (--) RDF by varying all parameters 
simultaneously. Y3 

see text (§ 3). 

Li (450°K) Na (373 °K) K (368 °K) 
3.117; 8 . 3 7  3.789; 8-628 4.518; 7.039 
3.98; 7.25 4.93; 6.65 5.47; 6-74 
5"18; 11"08 6"25; 10"41 7"25; 7"80 
5"89; 16-66 7"22; 23"10 9"17; 19"72 
6-27; 11"67 7.81; 7.20 8"31; 10"76 
7"32; 14"08 9"59; 5"93 10"39; 8"52 
7"90; 17"43 9"04; 23"93 12-68; 29"06 
7"62; 19"53 9"99; 23-44 11"29; 28"20 

3"18 1"80 2"19 
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313°K 433°K 
rl; C1 4.925; 9.189 4.741; 
rE; Ca 6"20; 5.18 5.79; 
r3; C3 7"99; 10.99 7"95; 
r4; C4 9.96; 24.26 9.59; 
rs; C5 9.08; 8 .72  9.69; 
r6; C6 12.48; 5-93 12-34; 
r7; C7 11.95; 23.57 12.71; 
rs; C~ 13.22; 26.24 12.44; 
r 9; C 9 13-79; 

272 3.50 11.58 

Table 5 (cont.) 

Rb 
^ 

513°K 
8-275 4"763 ; 
5-73 5"86; 

12-16 7-94; 
23"82 9"76; 
7"96 9"61 ; 
6"12 12"60; 

23-85 12"60; 
24.08 12.67; 
23"60 13"60; 

C s  
= .  ~ ^ = 

633 OK 303 OK 573 °K 848 OK 
8.02 4.77; 7-97 5-284; 8.961 5.251; 7"39 5.251; 6.45 
5.98 6.09; 6-17 6"90; 5"03 7.00; 7.55 7.03; 7.21 

11"93 7.95; 11.79 8.79; 10.99 9-02; 11.40 9.98; 11.97 
23.87 9.94; 24.17 10-23; 24.60 11.38; 23-85 11.72; 24.19 
7.83 9"85; 8.07 11.81; 7 .74  9.91; 8.58 8-63; 7.09 
6.29 11.06; 5-92 12-55; 5.12 12.83; 5.88 12.86; 6.13 

24"01 12"03; 23.40 13.33; 21.39 14.27; 24.90 16"24; 14.96 
24.01 13"01; 21.88 13-72; 23.39 14.11; 23.94 14-01; 25.41 
23.67 13.68; 24-00 15.26; 24.14 15-63; 20.25 

6.21 5.83 4"19 3.09 2.20 

where Hz(r-rp) denotes the normalized distribution 
f~anction for the lattice positions whose most probable 
position is given by rp and Hth(r) denotes the corre- 
sponding normalized spherically symmetric distribu- 
tion function due to harmonic thermal vibration around 
each of the lattice positions. 

Consequently, the lattice distortion due to H~ is 
given by 

A2a=A2r-A2s . (17) 

A2a, zt2S are the corresponding mean square displace- 
ments in any direction due to Ht and H,h respectively. 
For calculating A2s we have used the well known 
formula in Debye's theory of specific heat, namely 

3 h Z T [  ] 144.5T 
AZs= -4n2mkO 2 . (~b(~)+~/4 = -A6~2 ..... . A ,  (18) 

where m is the mass of the atom whose atomic weight 
is A, h and k are Planck and Boltzmann constants, 
T and O are the Kelvin and Debye temperatures and 
~=O/T;  A = q~(~) + ~/4, 

1 f t ydy 
~ ( ( ) =  ( ~0 exp ( y ) -  1" 

(19) 

In determining the interaction zone of the lattice, 
IPz[, which must be distinguished from the correlation 
length IPcl of the g(r) function, we have used the 
formula, [el also equation (72) of reference II; 
also equation (13)], 

Ip~l ~- (rl/Aa) 2, (13a) 

since in this case we do not need the parameter e. For 
liquid-like reflexions the size of the lattice must exceed 
the volume corresponding to this neighbour distance 
lPzl ( = d  A, say). The linear dimension of the lattice is 
then given by L ~ 2d A. A perusal of the Tables 1 and 2 
would show that the correlation length Lc of the g(r) 
function, as expected from the experimental curves, 
lies between 10 and 25 .A, whereas the linear dimen- 
sion of the cluster L varies from 50 to 150 ~.  

The values for argon lie in between those for f.c.c. 
metals and b.c.c, metals. 

It should be noted that we have used one distribu- 
tion function to fit the experimental g(r) curve. This 

means that we have assumed a statistically homo- 
geneous system. The excellent agreement with the 
experimental curve shows that near the melting point 
the clusters, if present in the liquid state, are densely 
packed so that one set of statistics suffices to explain 
diffraction data, (see Figs. 3-8). The statistical in- 
homogeneity of liquid systems assumes importance as 
we increase the temperature as shown by Figs. 3 (ii), 
7 (iii), 7 (iv) and 8 (ii). Further, Fig. 8 shows that the 
system tends to become again statistically homo- 
geneous corresponding to the gaseous state as we in- 
crease the temperature sufficiently. We could not re- 
produce the second maximum of the experimental 
curve of argon-2 (91.8 °K and 1.8 atmosphere) reported 
by Eisenstein & Gingrich (1942) by this method [cf. 
Fig. 3(ii)]. The same also applies to the case of Cs at 
573 °K, [cf. Fig. 8 (ii)]. Obviously, this strongly suggests 
that here the distribution of the centroids of clusters 
themselves plays a significant role in determining the 
nature of the g(r) functions. In principle this could be 
corrected by introducing two a priori sets of statistics, 
one due to the first neighbours inside a cluster and the 
other due to that of centroids of clusters themselves. 
But we have not yet tried this method. Thus the de- 
tailed analyses of g(r) functions, i f  properly carried out, 
show convincingly that liquids are nothing but dis- 
torted crystallites of ultramicroscopic dimensions. 
Nevertheless, the excellent agreement between the 
theoretical and experimental curves in the densely 
packed systems does not necessarily mean that liquids 
near melting points are statistically homogeneous 
systems consisting of only one large generalized lattice 
as has been assumed implicitly by the present method 
of analysis of g(r) curves. In order to justify our 
assumption that it is really a densely packed hetero- 
geneous system, (on the atomic scale), we need to 
study more carefully the theoretical g(r) - functions 
calculated from the distribution function theory of 
statistical mechanics and the various properties of the 
system related to it. 

4. Evidence for the existence of clusters in the liquid state 

In order to offer convincing evidence for the existence 
of clusters at the melting point, though a RDF cal- 
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culated from the assumption of the existence of a single 
homogeneous lattice agrees well with the observed 
function, we shall discuss here the case of liquid argon 
and liquid sodium. Khan (1964) had calculated theo- 
retical g(r) curves of argon at several temperatures 
(from Percus-Yevick and CHNC integral equations) 
by using the superposition approximation of the Kirk- 
wood and Lennard-Jones potential as well as the 
Guggenheim-McGlashan potential. Most of his com- 
puted curves differ even qualitatively from the ob- 
served curves reported by Eisenstein & Gingrich (1942). 
For example, for argon at 144.1°K and number 
density 1.3/2 x 10 -z per A s the computed curves are 
much wider and the second maximum occurring at 
5.2 A in the experimental curve is completely missing. 
Even at 91.8°K, the experimentally observed second 
maximum is not reproduced in the theoretical curve. 
It is interesting to note that we also could not get this 
maximum from the assumption of a homogeneous 
lattice. But Kahn's calculated curve using the LJ 
potential and the PY method agrees quite well with the 
experimental curve for argon at the triple point. Since 
the conclusions derived from statistical mechanical 
considerations are certainly correct for homogeneous 

15 
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Fig. 8. Liquid caesium. (i) at 303°K, (ii) at 573°K, (iii) at 
848°K. Vertical scales are successively shifted by 5 units. 
Experimental values ( . . . )  (Gingrich & Heaton, 1961) and 
calculated (--) RDF by varying all parameters simulta- 
neously. 

systems containing a sufficiently large number of 
atoms, one could expect that the properties of argon at 
the triple point calculated from such g(r) values would 
also agree well with the observed properties. But the 
calculated values of pressure and compressibility as 
reported by Khan differ from the observed values by 
orders of magnitude. Certainly such a large discrepancy 
cannot be ascribed either to the inadequacy of the 
superposition approximation or to the inaccuracy in 
the values of the parameters of the potential function. 
If this were so, we would not get such nice agreement 
for the g(r) curves. In particular, the calculated and 
experimental values of isothermal compressibility 
which depend only on g(r) and not on the interacting 
potential ought to agree equally well also. Further, 
other properties like viscosity and surface tension 
which, like pressure, depend on the slope of the poten- 
tial function would differ similarly. But the results 
reported by Johnson, Hutchinson & March (1964) 
show that calculated values agree fairly well with the 
experimental values.* Since we cannot doubt the va- 
lidity of statistical mechanics for large homogeneous 
systems, the only logical and consistent inference from 
these discrepancies is the hypothesis that the system 
consists of densely packed small clusters. Our convic- 
tion of the legitimacy of our conclusion is further 
strengthened by the fact that although the experi- 
mental and calculated g(r) functions for the case of 
liquid sodium at 373°K agree extremely well [see 
Fig. 6 (ii)], values of pressure and isothermal compress- 
ibility calculated by using the oscillating potential 
function given by Johnson et al. (1964) also differ by 
orders of magnitude from the corresponding experi- 
mental values. This again must be ascribed to the 
presence of clusters, since the pair potential was cal- 
culated from the observed g(r). 

Thus quantitative and comparative studies of the 
RDF lead us to the only acceptable conclusion: 

At the triple point or near the melting point the 
dense systems behave almost as a statistically homo- 
geneous entity, i.e. the distribution function for the 
locations of different atoms with respect to a fixed 
origin is practically homogeneous. Actual inhomo- 
geneity of the systems is revealed by those properties 
like pressure and compressibility which are sensitive 
to the presence of clusters. 

At higher temperatures, the clusters are separated 
by relatively much larger distances so that the distribu- 
tion functions for the location of different neighbours 
depend on the choice of the origin and we get only the 
ensemble average in which the average properties of 
the individual members of the ensemble, e.g. clusters, 
'cybotactic groups' are lost and cannot be retrieved 
from the observed g(r) functions without further 
analysis (e.g. from the standpoint of statistical me- 

* For viscosity this is true for the Born-Green method. 
The value calculated by the PY method is 30 times less than 
the experimental value. 
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chanics of small systems) and perhaps some additional 
plausible hypotheses. 

5. Absence of observable small-angle scattering 

It is perhaps worthwhile to say a few brief words of 
explanation of the absence of small-angle scattering 
in diffraction diagrams of liquids near their melting 
points in spite of the presence of clusters of linear 
dimension 50-150 ,/~, since the tails of 000 reflexions of 
such clusters would extend up to ~ 1 o 

The reasons for the absence of any noticeable effect 
of such small clusters in densely packed systems are 
mainly twofold: first, the intensity of 000 reflexions 
in the region of experimental studies would be much 
too weak to be recognized easily• It should be kept in 
mind that the overall appearance of small-angle 
scattering, as is well known (of. Guinier & Fournet, 
1955; Levelut & Guinier, 1965), depends on the size 
of the clusters, their density of packing and on the 
contrast of the density (Pc-})2. Pc is the actual density 
within the cluster itself and ~ the average (macroscopic) 
density of the system. If the size of the clusters de- 
creases, the small-angle scattering becomes broader 
and consequently the intensity decreases. Further, for 
densely packed systems the density contrast would also 
be quite small. 

But the chief reason for the absence lies in the atomic 
arrangement of dense systems• RDF analysis shows 
that the average distances between two nearest neigh- 
bours in adjacent clusters do not differ by more than 
3 % from those in a crystal at the same temperature, 
a small value compared to their dispersions, (10-12 %). 
Consequently, one can safely conclude that such 
systems, so far as diffraction data are concerned, be- 
have as i f  they form single homogeneous lattices, the 
only difference being a slight increase in the back- 
groundscattering due to a slightly greater A2N. * 

6. Significant structure model of the liquid state in the 
light of the unified theory of diffraction 

Of all model theories of the liquid state, the signi- 
ficant structure theory has been extremely successful in 
explaining thermodynamic properties of many li- 
quids near melting temperatures (c f  Eyring, Ree & 
Hirai, 1958; Eyring & Marchi, 1963). This theory 
visualizes liquids as a mixture of crystals and gases, 
their relative concentration being determined by the 
excess volume at the melting point. Consequently the 
liquid partition function is given by the product of 
known crystalline and gaseous partition functions• 
Using a few plausible assumptions Eyring and his 
coworkers obtained an expression for the partition 

* This slight inhomogeneity can nevertheless have appre- 
ciable effect on the relative motion of the individual atoms 
and the centroids of the clusters themselves. Thus, it is ex- 
pected to influence the pressure, compressibility, diffusion co- 
efficients and electronic properties of such systems. 

function of the liquid in which only macroscopicalIy 
observed parameters are involved• In spite of the re- 
markable agreement between calculated and observed 
values, this theory has not received adequate atten- 
tion from theoreticians, presumably because of the 
fact that it contains too many ad hoe assumptions• 
Further, the assumption of simultaneous existence of 
two phases, one consisting of a large ideal single 
crystal in the liquid state, is obviously physically 
untenable• Nevertheless, the concrete achievements of 
the theory force us to try to understand why this model 
succeeds. Presumably the success is due to the fact 
that this model, though not in its literal sense, reflects 
the actual nature of the liquid state. As shown below, 
from the standpoint of diffraction theory this model is 
completely equivalent to the concept of the liquid state 
at which we had arrived previously• The only difference 
lies in the fact that in our case the crystallites are 
distorted microcrystallites and there is no need to 
postulate the simultaneous existence of the two phases, 
although a few molecules may be roaming about in 
the intercluster space• 

In order to prove this, it suffices to note that our 
system may be looked upon as a very large distorted 
crystal embedded with agglomerated point defects• 
As Levelut & Guinier (1965) have shown, the inter-  
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Fig• 9• Solid copper (Ruppersberg, 1966). (i) at 973 °K by vary- 
ing all parameters simultaneously, (ii) at 973°K by varying 
only c~, (iii) at 1293°K by varying all parameters, (iv) at 
1293°K by varying only ~. Vertical scales are successively 
shifted by 20 units. 
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ference effect of such a system would produce in addi- 
tion to the usual diffraction patterns of such (distorted) 
crystals, a continuous scattering 1 o due to these 
vacancies where 

Io = evl fol z. (21) 

Here c is the concentration of vacancies segregated 
into v groups and If0[ 2 is the structure factor of the 
atom in the crystal. This means that the scattered 
intensity of the system containing N atoms is practic- 
ally the same as that given by a mixture of a (distorted) 
crystal containing (N-No)  atoms and N o (= ev) atoms 
of the same substance existing as gas molecules. 

7. Summary 

For convenience we summarize here the major con- 
clusions arrived at above. 

(i) In order to arrive at practically useful results, all 
theories of diffraction have to introduce the concept 
of probability of the distribution of scattering centres. 
That means that the system is supposed to be a statisti- 
cally homogeneous entity. 

(ii) Even at ordinary temperatures real crystals do 
not form ideal periodic lattices. Such systems can be 
adequately described with the help of a generalized 
lattice in which the centroids of atoms are distributed 
randomly around their most probable positions. Thus 
the anharmonic effect of thermal vibrations can be 
separated into such a distribution Hz of the centroids 
of the atoms and a harmonic vibration Hth around 
each of these centroids, analogous to the so-called 
quasi-harmonic case of ideal crystals. 

(iii) With increasing temperature lattice distortion 
increases and near the melting point it becomes quite 
significant and changes discontinuously to the value 
for the liquid state. 

(iv) The liquid state consists of distorted microcrys- 
tallites. Relative lattice distortion in general is around 
10 % for f.c.c, structures and 8 % for b.c.c, structures. 
The estimated linear dimension of the clusters varies 
from 50 to 150 ,~, depending on the type of crystalline 
structure. With increasing temperature the lattice 
distortion increases and the size of the clusters de- 
creases. 

(v) A first-order phase transition is governed prin- 
cipally by the condition that a statistically homogeneous 
distribution function becomes inhomogeneous. Crys- 
tals and gases present homogeneous distributions for 

the probabilities of occurrence of the neighbours, but 
in the liquid state they are inhomogeneous. 

(vi) The absence of (detectable) small-angle scat- 
tering of liquid systems near their melting points does 
not necessarily mean that small clusters do not exist 
in the system. Quantitative and comparative studies of 
g(r) functions calculated from the distribution function 
theory of statistical mechanics for liquid argon and 
liquid sodium lead to the inevitable conclusion that 
liquids near melting points are densely packed systems 
of small clusters. For the liquid state one must study 
statistical thermodynamics of small systems. 

(vii) The striking success of the significant structure 
theory of the liquid state is explained satisfactorily in 
terms of the existence of these clusters of distorted 
crystallites. 
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